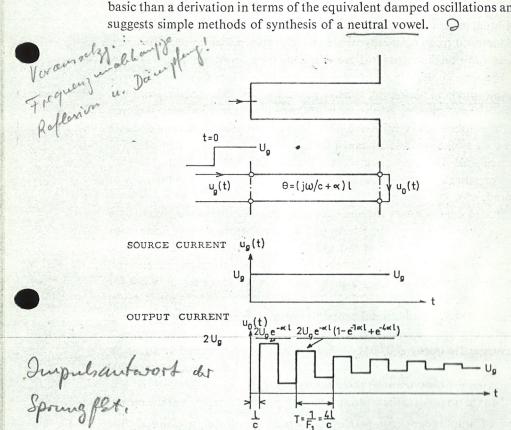
Faut, burnes Analysis and synthesis of opench processes

Analysis and synthesis of opench processes

198

198

198


198

198

Au, kolam, 5.173-272.

output. Therefore at the time 3l/c the output current drops down to the value $2U_g e^{-al} - 2U_g e^{-3al}$ which is close to zero. After an additional interval of 2l/c there adds the term $2U_g e^{-5al}$ etc. and the result is a square wave of the frequency of the first formant of the neutral vowel $F_1 = c/4l$, the amplitude of which decays by the factor of e^{-4al} per period until the stationary condition of $u_0 = U_g$ has been reached.

One interesting feature of this derivation, see Fant (1967) for further details, is that the square wave is the sum of all formants up to n = infinity of the neutral vowel, compare fig. 14. It is simpler and physically more basic than a derivation in terms of the equivalent damped oscillations and suggests simple methods of synthesis of a neutral vowel. \bigcirc

Sein 1

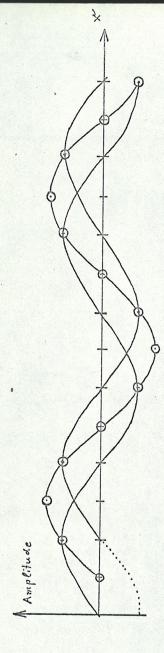

zeichnen!

Fig. 15. Time-domain derivation of the volume velocity response at the open end of a single tube resonator to a step shaped volume velocity (current) excitation at the glottal end. The damped square wave originating from repeated reflexions has a basic frequency of F_1 and constitutes the sum of all formants up to infinity.

Dia 2/07

Wobei x = raumliche Ausdehuung oder = Zeitverlauf gesetzt werden punkturise Addition der Amplituden werte Ar(x) + A2(x), zveier Sinuskurrew Superposid

Vore.

mifflere Kurve $A_m(x) = \frac{A_A(x) + A_2(x)}{\alpha}$ A Amplifude

resultierende

$$A_{r}(x) = 2A_{m}(x)$$